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Abstract— This paper describes a method for value-range
queries under an area size condition. The query conditions
are: the average value is in a certain range, the number of
missing values is less than a specific percentage, and the con-
tiguous area size is larger than a given limit. The method
involves multi-level hierarchical clustering with depth-first
strategy, convex hull and point-in-polygon algorithms. Ex-
amples of this method with Earth science data are given.
The paper also discusses the future plan, especially, the de-
velopment of a web-based prototype of the above algorithms
and the implementation with a database management sys-
tem.!

I. INTRODUCTION

Data from the Earth Observing System (EOS) and other
Earth observing platforms have been increasing explosively
these days. An efficient method is necessary to search mas-
sive data sets. Content-based browsing or searching[1] is
one of the promising methods by which a user searches
data based on data values before subsetting and/or access-
ing data sets. The content-based queries provide users with
areas in which the parameter values are in a given range.
For scientists, the areas within the range of average value
for a given parameter may be attractive. In addition, sci-
entists may be concerned with areas larger than a certain
size which preferably do not contain a large proportion of
missing data points. These three conditions constitute the
constraints in this study.

Yang et al.[2] came up with a fast method for searching
high resolution data points within a certain value range for
a given parameter. The method deals with queries with
value range, focusing on the reduction of searching time
based on a two level pyramid data model[l]. Clusters of
low resolution cells are constructed, using the similarity
among the histograms of the low resolution cells. There
are other work on value-range queries, area constraints,
and clustering in the cases with existential obstacles (e.g.,
[3], [4], [5], [6], [7]). The current work is dealing with both
averaging value constraint and an existential constraint,
the area size.

I This work has been partially supported by NASA ESTO (NAGS5-
8607 and NAG5—10177).

II. METHOD

Clustering techniques[8], [9] have been widely studied
and used in many disciplines. The specific clustering
method we present here is based on the hierarchical depth-
first clustering technique. First, a large number of spatial
clusters at the first level are generated, considering the data
points within a value range and possibly removing spatial
outliers. Three constraints are checked in the order of size
constraint, missing data proportion constraint, and aver-
age value constraint. Assuming that the area of a cluster
at a certain level is checked. If it does not meet the first
constraint, the area is discarded. Then, the next cluster
at the same level, branching from the same cluster at the
previous level, or the next cluster at the previous level is
checked. If it is satisfying the first constraint, the area is
then clustered to examine whether its smaller areas within
it may meet all constraints. If it meets all three constraints,
it is chosen for display. The generation of clusters and con-
straint checking are based on depth-first strategy. Details
of our method are reported in [10].

The constraint checking is carried out by using convex
hull and point-in-polygon algorithm[11], [12]. Since the
constraints are related to area, the areas need to be con-
structed in some way. Convex hull makes the area compact
because 1t generates the smallest convex domain contain-
ing data points[12]. The areas generated by convex hull
are more reasonable than those by KD-tree[13]. The latter
may contain unnecessary areas which result from rectan-
gular ranges used in KD-tree. Point-in-polygon algorithm
is computationally intensive. To reduce its computation
time, only data points within x- and y-range of convex hull
are taken into account. Convexity property of convex hull
makes it easy to determine whether a data point is located
inside the convex hull. Data points inside the convex hull
may or may not lie within the value range. Data points
and missing data points inside the convex hull are counted
and the average value is calculated for constraint checking.

The method is to find reliable, feasible areas satisfying
the given constraints which are the size limit of an area with
less than a specified proportion of missing data points and
the average value within a specified range. The method is



based on the depth-first clustering strategy branching from
infeasible areas to feasible areas. Since there is a large num-
ber of areas satisfying the size constraint, a feasible method
should be developed based on computational time in real
situation. The number of grid data points is used to repre-
sent the size of an area. For example, the size of an area 1s
constrained such that it is not smaller than a certain num-
ber of grid data points. Since these points are distributed
both uniformly and regularly, the number of the grid data
points is approximately equivalent to the size of the area
over which they are located.

Earth science data have a characteristic such that as
the data points are closer, their attribute values tend to
be more similar. Based on this spatial characteristic, the
data points within a value range also appear to be closer
together. The hierarchical agglomerative clustering tech-
nique applies to those data points. While the areas gen-
erated by the clustering technique contain the data points
within the value range and those outside the value range,
they consist of many data points within the value range. If
the areas consist of two groups of data points, for which the
values are far away from the value range, and are satisfying
the constraints, they are not the areas that one wants to
find. That is why the areas generated by our method are
called reliable.

Figures 1 illustrates how the algorithm i1s working with
four levels. The number of clusters at the first level is large
and one of the clusters is chosen here for the illustration.
The number of clusters at the second, the third and the
fourth level is 3 | 2, and 2, respectively. There are four
types of data points shown in Figure 1. The symbol e de-
notes a data point within the value range, the symbol A
a data point above the maximum of the value range, the
symbol V a data point below the minimum of the value
range, and the symbol x a data point with missing value.
The hierarchical agglomerative clustering technique is ap-
plied to data points within the value range. The convex
hull is drawn with a thicker line showing one cluster at the
first level. The first number in the sequence identifying a
cluster starting from the left denotes the cluster at the first
level, the second number from the left denotes the cluster
at the second level, the third number from the left denotes
the cluster at the third level, and the fourth number from
the left denotes the cluster at the fourth level. For ex-
ample, Cluster 1.2.1.2 means the second cluster at level 4,
belonging to the first cluster at level 3, belonging to the
second cluster at level 2, belonging to the first cluster in
level 1.

Assuming that the size constraint for data points is 7,
that the missing proportion constraint is 0.2, and that the
average constraint of an area is specified. Figure 1 shows
clusters up to four levels. The area of the first cluster at
the first level, Cluster 1.0.0.0, shown here is not supposed
to be satisfying the average constraint. Three clusters at
the second level are generated using the data points within
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Fig. 1. Tlustration of how the algorithm is working

the value range, e, and they are Cluster 1.1.0.0, Cluster
1.2.0.0, and Cluster 1.3.0.0. Since the data points, e, are
considered, the areas of the three clusters at second level
exclude most of data points outside the value range but
inside the convex hull of Cluster 1.0.0.0. The candidate
three areas appear to be reliable because the areas consist
of many data points within the given value range. The area
of Cluster 1.1.0.0 is satisfying the first two constraints and
is supposed to be satisfying the average constraint. Next,
the convex hull of Cluster 1.2.0.0 is constructed. The area
is satisfying the first two constraints. However, if it turns
out not to meet the average constraint, the clustering tech-
nique is applied to data points within the value range inside
this convex hull. Two clusters, which are Cluster 1.2.1.0
and Cluster 1.2.2.0, are then generated. The area of Clus-
ter 1.2.1.0 is satisfying the first two constraints. If it does
not meet the average constraint, the clustering technique is
applied to the data points inside this convex hull and clus-
ters at the next level are then generated. They are Cluster
1.2.1.1 and Cluster 1.2.1.2. The area of Cluster 1.2.1.1 is
satisfying all constraints because the number of data points
is 8 and the values of all data points in this convex hull are
within the value range. The area of Cluster 1.2.1.2 does
not meet the size constraint so that it is discarded. Next,
Cluster 1.2.2.0 is considered. The area of Cluster 1.2.2.0
is satisfying the first two constraints, since the number of
data points is ten and there is no missing data point. If the
area is satisfying the average constraint, the area is chosen.
Finally, Cluster 1.3.0.0 is considered. Since the area of this
cluster does not meet the size constraint, the area is dis-
carded. All clusters generated have been considered so that
the algorithm stops at this point.

I11. EXAMPLES

We use a statistical analysis and graphics software,
Splus, for implementation. The number of clusters at each



Fig. 2. Areas for NDVI data with average [0.04,0.26] and size limit
with 100 data points and less than 15 percent of missing data points

Fig. 3. Areas for SSTA data with average [1.0,4.0]°C' and size limit
with 100 data points and less than 5 percent of missing data points

level, the minimum number of data points, the threshold
percentage of missing points, and the value range are con-
trol parameters.

We use three sample data sets from CIDC (Climatology
Interdisciplinary Data Collection) CD-ROM set[14]. The
data are NDVI (Normalized Difference Vegetation Index),
SSTA (Sea Surface Temperature Anomaly) and Surface
Skin Temperature covering global land, global ocean, and
globe respectively. The data sets are monthly mean values
with 1 x 1 degree spatial resolution. We randomly pick the
time, August 1981 for NDVI, January 1987 for both SSTA

and Surface Skin Temperature.

Figure 2 is the example of NDVI. The size constraint
is 100 data points, which provides areas containing not
smaller than 100 data points. The average value range is
taken to be between 0.04 and 0.26. Since the NDVI range
between 0.04 and 0.26 i1s small, it is expected that the areas
to be found will be low vegetation areas such as deserts.
Since NDVI data cover global land, it is preferable that the
areas do not include oceans. From this point of view, the
minimum missing proportion is set to 0.15. That is, any
area to be found should not contain the missing data points
more than 15 percent of the total data points in that area.
When the missing proportion is small, the areas have more
chance of not meeting that constraint. In this case, these
areas need to be further clustered. The number of clusters
at the first level is 10 and the numbers at the rest of levels

Fig. 4. Areas for Surface Skin temperature data with average
[301,303]°K and size limit with 100 data points and less than 5 per-
cent of missing data points

are all 2. Since the data points within the value range are
over-plotted after finding the areas, the isolated data points
are shown inside/outside convex hulls. Figure 2 shows the
areas with gray color which contain 100 data points, have
average NDVI values between 0.04 and 0.26, and have not
more than 15 percent of missing data points. There are
only seven clusters shown at the first level because each
of other three clusters at the first level has a few number
of data points so that they are eliminated for purposes of
display. Eleven areas satisfying all constraints are found,
which are convex hulls filled with gray levels. Areas found
at each level are filled with dark gray color. Clustering pro-
ceeds up to 6 levels to find these areas. One area is found
at the second level, four areas at the third level, and six
areas at the fourth level. As expected, the low vegetation
or desert areas cover the Middle East, some parts of China,
northern Africa with the Sahara Desert and southern part

of Africa, Australia, and Chile.

Figure 3 shows the areas with gray color which contain
more than 100 data points, have average SSTA values be-
tween 1.0°C' and 4.0°C, and have not more than 5 percent
of missing data points. There are many clusters with points
on which the value range condition 1s satisfied. However,
there are only four areas satisfying all conditions. Two
larger areas are in tropical Pacific. The third is in north-
ern part of the Pacific near the North America coast. The
last area is also in Pacific but in the southern part.

Figure 4 shows the areas with gray color which contain
more than 100 data points, have average Surface Skin Tem-
perature values between 301°K and 303°K, and have not
more than 5 percent of missing data points. Nine areas
satisfying all constraints are found. Almost half of them
are found at the first level, and others are found on either
the second level or the third level. The areas satisfying the
given conditions cover tropical areas from Indian Ocean un-
til the eastern Pacific Ocean including most of Australia.

IV. FUTURE WORKS

The technique described in this work shows promising re-
sults. We plan to extend the work in three directions. The



first is to use MODIS data to test the algorithm since the
volume of MODIS data is much larger. The second and a
major task is to build a web-based prototype to make such
constrained value range queries available to web users. To
do this, we plan to follow some standards such as GML
(Geography Markup Language) and SVG (Scalable Vector
Graphics). That is, we put a output layer on the system to
make the output (various areas) in GML. Then, we trans-
fer the GML into SVG for displaying on web browsers. We
plan the GML-SVG path instead of direct SVG path be-

cause we expect third party software will be available for
displaying information in GML format.

To have a workable prototype, we may need a database
management system to support the indexing system.
Therefore, our third potential action is to study the us-
age and efficiency of a database management system such
as Oracle for implementing the prototype. In particular,
Oracle Spatial Option will be focused to study the poten-
tial for such a prototype.
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